Exercise 3.3.8

If \(X\) is a subset of \(Y\) , let \(\imath_{X \to Y} : X → Y\) be the inclusion map from \(X\) to \(Y\) , denoted by mapping \(x \mapsto x\) for all \(x \in X\), i.e., \(\imath_{X \to Y} (x) := x\) for all \(x \in X\). The map \(\imath_{X \to X}\) is in particular called the identity map on \(X\).

(a) Show that if \(X \subseteq Y \subseteq Z\) then \(\imath_{Y \to Z} \circ \imath_{X \to Y} = \imath_{X \to Z}\) .
(b) Show that if \(f : A \to B\) is any function, then \(f = f \circ \imath_{A \to A} = \imath_{B \to B} \circ f\) .
(c) Show that, if \(f : A \to B\) is a bijective function, then \(f \circ f^{-1} = \imath_{B \to B}\) and \(f^{-1} \circ f = \imath_{A \to A}\).
(d) Show that if \(X\) and \(Y\) are disjoint sets, and \(f : X \to Z\) and \(g : Y → Z\) are functions, then there is a unique function \(h : X \cup Y \to Z\) such that \(h \circ \imath_{X→X \cup Y} = f\) and \(h \circ \imath_{Y \to X \cup Y} = g\).

  • \(\bullet\) (a) Show that if \(X \subseteq Y \subseteq Z\) then \(\imath_{Y \to Z} \circ \imath_{X \to Y} = \imath_{X \to Z}\)
  • \(-\) Let \(x\) be any element in \(X\)
  • \(\Vdash\) \((\imath_{Y \to Z} \circ \imath_{X \to Y}) (x)\)
  • \(=\) { Definition 3.3.10 : function composition }
    • \((\imath_{Y \to Z}) (\imath_{X \to Y} (x))\)
  • \(=\) { \(X \subseteq Y\) and definition of the inclusion map }
    • \((\imath_{Y \to Z}) (x)\)
  • \(=\) { \(Y \subseteq Z\) and definition of the inclusion map }
    • \(x\)
  • \(=\) { \(X \subseteq Z\) and definition of the inclusion map }
    • \((\imath_{X \to Z}) (x)\)
  • \(\vdash\) { Definition 3.3.7 (Equality of functions) }
    • \(\imath_{Y \to Z} \circ \imath_{X \to Y} = \imath_{X \to Z}\)
  • \(\square\)
  • \(\bullet\) (b) Show that if \(f : A \to B\) is any function, then \(f = f \circ \imath_{A \to A} = \imath_{B \to B} \circ f\) .
  • \(-\) Let \(a\) be any element in \(A\)
  • \(\Vdash\) \(f (a)\)
  • \(=\) { \(A \subseteq A\) and definition of the inclusion map }
    • \(f (\imath_{A \to A} (a))\)
  • \(=\) { Definition 3.3.10 : function composition }
    • \((f \circ \imath_{A \to A}) (a)\)
  • \(=\) { \(f (a) \in B\) and definition of the inclusion map }
    • \((\imath_{B \to B}) (f (a))\)
  • \(=\) { Definition 3.3.10 : function composition }
    • \((\imath_{B \to B} \circ f) (a)\)
  • \(\vdash\) { Definition 3.3.7 (Equality of functions) }
    • \(f = f \circ \imath_{A \to A} = \imath_{B \to B} \circ f\)
  • \(\bullet\) (c) Show that, if \(f : A \to B\) is a bijective function, then \(f \circ f^{-1} = \imath_{B \to B}\) and \(f^{-1} \circ f = \imath_{A \to A}\).
  • \(\Vdash\) { Prove each case }
    • \(\bullet\) Show that \(f \circ f^{-1} = \imath_{B \to B}\)
      • \(-\) Let \(b\) be any element in \(B\)
      • \((f \circ f^{-1})(b)\)
      • = { Exercise-3.3.6 }
        • \(b\)
      • = { Definition of the inclusion map }
        • \(\imath_{B \to B}(b)\)
    • \(\square\)
    • \(\bullet\) Show that \(f^{-1} \circ f = \imath_{A \to A}\)
      • \(-\) Let \(a\) be any element in \(A\)
      • \((f^{-1} \circ f)(a)\)
      • = { Exercise-3.3.6 }
        • \(a\)
      • = { Definition of the inclusion map }
        • \(\imath_{A \to A}(b)\)
    • \(\square\)
  • \(\square\)
  • \(\bullet\) (d) Show that there is a unique function \(h : X \cup Y \to Z\) such that \(h \circ \imath_{X→X \cup Y} = f\) and \(h \circ \imath_{Y \to X \cup Y} = g\) if
  • \(-\) \(X\) and \(Y\) are disjoint sets
  • \(-\) \(f : X \to Z\) and \(g : Y → Z\)