Exercise 3.3.5

Let \(f:X\to Y\) and \(g:Y\to Z\) be functions. Show that if \(g\circ f\) is injective, then \(f\) must be injective. Is it true that \(g\) must also be injective? Show that if \(g\circ f\) is surjective, then \(g\) must be surjective. Is is true that \(f\) must also be surjective?

  • \(\bullet\) Show that \(g\circ f\) is injective \(\Rightarrow\) \(f\) is injective.

  • \(\Vdash\) { Proof by contradiction }

    • \(\bullet\) Show that there is a contradiction, when
    • – A1: \(\lnot\) (\(f\) is injective)
    • \(\Vdash\) \(g\circ f\) is injective
    • \(\equiv\) { Definition 3.3.14 }
      • \(x\neq x'\implies (g\circ f)(x)\neq (g\circ f)(x')\)
    • \(\Rightarrow\) { By Definition 3.3.14 and A1: \(\exists x_1,x_2\in X. (x_1\neq x_2)\land (f(x_1)=f(x_2))\) }
      • \((g\circ f)(x_1)\neq (g\circ f)(x_2)\)
    • \(\equiv\) { Definition 3.3.10 }
      • \(g(f(x_1))\neq g(f(x_2))\)
    • \(\equiv\) { Let \(f(x_1)=f(x_2)=y\) }
      • \(g(y)\neq g(y)\)
    • \(\vdash\) \(\bot\)
    • \(\square\)
  • \(\square\)

  • \(\bullet\) Show that \(g\circ f\) is not injective when \(g\) is not injective.

  • \(\Vdash\) \(g\) is not injective

  • \(\equiv\) { Definition 3.3.14 }

    • \(\exists y_1,y_2\in Y. (y_1\neq y_2)\land(g(f(x_1))=g(f(x_2)))\)
  • \(\Rightarrow\) { \(f:X\to Y\Rightarrow \forall x\in X,\exists y\in Y. f(x)=y\) }

    • \(\exists x_1,x_2\in X, \exists f(x_1),f(x_2)\in Y.(x_1\neq x_2)\land(f(x_1)\neq f(x_2))\land (g(f(x_1))=g(f(x_2)))\)
  • \(\equiv\) { Definition 3.3.10 }

    • \(\exists x_1,x_2\in X.(x_1\neq x_2)\land ((g\circ f)(x_1)=(g\circ f)(x_2))\)
  • \(\equiv\) { Definition 3.3.14 }

    • \(g\circ f\) is not injective
  • \(\square\)



  • \(\bullet\) Show that \(g\circ f\) is surjective \(\Rightarrow\) \(g\) is surjective.

  • \(\Vdash\) { Proof by contradiction }

    • \(\bullet\) Show that there is a contradiction, when
    • – A1: \(\lnot\) (\(g\) is surjective)
    • \(\Vdash\) \(g\circ f\) is surjective
    • \(\equiv\) { Definition 3.3.17 }
      • \(\forall z\in Z,\exists x\in X, (g\circ f)(x)=z\)
    • \(\equiv\) { Definition 3.3.10 }
      • \(\forall z\in Z,\exists x\in X, g(f((x))=z\)
    • \(\equiv\) { \(f:X\to Y\implies\forall x\in X,\exists y\in Y. y=f(x)\) }
      • \(\forall z\in Z,\exists y\in Y, g(y)=z\)
    • \(\vdash\) { By Definition 3.3.17 and A1: \(\exists z\in Z, \nexists y\in Y. g(y)=z\) }
      • \(\bot\)
    • \(\square\)
  • \(\square\)

  • \(\bullet\) Show that \(g\circ f\) is not surjective when \(f\) is not surjective.

  • \(\Vdash\) \(f\) is not surjective

  • \(\equiv\) { Definition 3.3.17 }

    • \(\exists y\in Y,\nexists x\in X, f(x)=y\)
  • \(\Rightarrow\) { \(g:Y\to Z\implies \forall y\in Y,\exists z\in Z.g(y)=z\) }

    • \(\exists z\in Z,\exists y\in Y,\nexists x\in X, g(f(x))=g(y)=z\)
  • \(\equiv\) { Definition 3.3.10 }

    • \(\exists z\in Z,,\nexists x\in X, (g\circ f)(x)=z\)
  • \(\equiv\) { Definition 3.3.14 }

    • \(g\circ f\) is not surjective
  • \(\square\)