Corollary 2.2.9 If \(a\) and \(b\) are natural numbers such that \(a+b=0\), then \(a=0\) and \(b=0\).
\(Proof~by~Tao\). Suppose for the sake of contradiction that \(a\neq0\) or \(b\neq0\). If \(a\neq0\) then \(a\) is positive, and hence \(a+b\) is positive by Propostion 2.2.8, a contradiction. Similarly if \(b\neq0\) then \(b\) is positive, and again \(a+b\) is positive by Proposition 2.2.8, a contradiction. Thus \(a\) and \(b\) must both be zero. \(\square\)
\(Proof~in~structured~derivation\)
- 
          
    \(\bullet\) Show that \(a,b\in\mathbb{N}.~a+b=0\implies a=0\land b=0\). 
- 
          
    \(\Vdash\) { Proof by contradiction } - 
          
    \(\bullet\) Show that there is a contradiction, when 
- 
          
    – \(a+b=0\) 
- 
          
    – \(a\neq0\lor b\neq0\) 
- 
          
    \(\Vdash\) { Proof by cases } - 
          
    \(\bullet\) Show that there is a contradiction, when 
- 
          
    – \(a+b=0\) 
- 
          
    – \(a\neq0\) 
- 
          
    \(\Vdash\) \(a+b\) 
- 
          
    \(\neq\) { Proposition 2.2.8: \(a,b\in\mathbb{N}.~a\neq0\implies a+b\neq0\) } - 0
 
- 
          
    \(\vdash\) { assumption: \(a+b=0\) } - \(\bot\)
 
- 
          
    \(\square\) 
- 
          
    \(\bullet\) Show that there is a contradiction, when 
- 
          
    – \(a+b=0\) 
- 
          
    – \(b\neq0\) 
- 
          
    \(\Vdash\) \(a+b\) 
- 
          
    \(\neq\) { Proposition 2.2.8: \(a,b\in\mathbb{N}.~b\neq0\implies a+b=b+a\neq0\) } - 0
 
- 
          
    \(\vdash\) { assumption \(a+b=0\) } - \(\bot\)
 
- 
          
    \(\square\) 
 
- 
          
    
- 
          
    \(\square\) 
 
- 
          
    
- 
          
    \(\square\)