Corollary 2.2.9

Corollary 2.2.9 If \(a\) and \(b\) are natural numbers such that \(a+b=0\), then \(a=0\) and \(b=0\).

\(Proof~by~Tao\). Suppose for the sake of contradiction that \(a\neq0\) or \(b\neq0\). If \(a\neq0\) then \(a\) is positive, and hence \(a+b\) is positive by Propostion 2.2.8, a contradiction. Similarly if \(b\neq0\) then \(b\) is positive, and again \(a+b\) is positive by Proposition 2.2.8, a contradiction. Thus \(a\) and \(b\) must both be zero. \(\square\)

\(Proof~in~structured~derivation\)

  • \(\bullet\) Show that \(a,b\in\mathbb{N}.~a+b=0\implies a=0\land b=0\).

  • \(\Vdash\) { Proof by contradiction }

    • \(\bullet\) Show that there is a contradiction, when

    • \(a+b=0\)

    • \(a\neq0\lor b\neq0\)

    • \(\Vdash\) { Proof by cases }

      • \(\bullet\) Show that there is a contradiction, when

      • \(a+b=0\)

      • \(a\neq0\)

      • \(\Vdash\) \(a+b\)

      • \(\neq\) { Proposition 2.2.8: \(a,b\in\mathbb{N}.~a\neq0\implies a+b\neq0\) }

        • 0
      • \(\vdash\) { assumption: \(a+b=0\) }

        • \(\bot\)
      • \(\square\)

      • \(\bullet\) Show that there is a contradiction, when

      • \(a+b=0\)

      • \(b\neq0\)

      • \(\Vdash\) \(a+b\)

      • \(\neq\) { Proposition 2.2.8: \(a,b\in\mathbb{N}.~b\neq0\implies a+b=b+a\neq0\) }

        • 0
      • \(\vdash\) { assumption \(a+b=0\) }

        • \(\bot\)
      • \(\square\)

    • \(\square\)

  • \(\square\)

Links to this page