Exercise 2.3.5 (Proposition 2.3.9)

2.3.5 Prove Proposition proposition 2.3.9 (Hint: fix \(q\) and induct on \(n\).)

  • \(\bullet\) Show that \(\exists m\exists r\in\mathbb{N}\) such that \(0\leq r<q\) and \(n=mq+r\), when
  • \(q\neq0\)
  • \(\Vdash\) { Proof by induction on \(n\) }
    • \(\bullet\) Base case: show that \(\exists m\exists r\in\mathbb{N}\) such that \(0\leq r<q\) and \(n=mq+r\), when
    • \(n=0\)
    • \(\Vdash\) \(0\)
    • \(=\) { Definition of addition: \(0+m:=m\); \(0+0=0\) }
      • \(0+0\)
    • \(=\) { Definition of multiplication: \(0\times m:=0\) }
      • \(0\times q+0\)
    • \(\square\)
    • \(\bullet\) Inductive step: show that \(\exists m\exists r\in\mathbb{N}\) such that \(0\leq r<q\) and \(n\pp=mq+r\), when
    • \(\exists m'\exists r'\in\mathbb{N}\) such that \(0\leq r'<q'\) and \(n=m'q'+r'\)
    • \(\Vdash\) \(n\pp\)
    • \(=\) { \(n\pp=n+1\) and the inductive hypothesis }
      • \(m'q'+r'+1\)
    • \(=\) { Proof by cases: \(r'<q'\implies r'\pp=r'+1\leq q'\) by Proposition 2.2.12 (e) }
      • \(\bullet\) case1: \(r'+1=q'\)
      • \(\Vdash\) \(m'q'+r'+1\)
      • \(=\) { substitue \(r'+1\) with \(q'\) }
        • \(m'q'+q'\)
      • \(=\) { Definition of multiplication: \((n\pp)\times m:=(n\times m)+m\); \(n\pp=n+1\) }
        • \((m'+1)q'\)
      • \(=\) { Definition of addition: \(0+m:=m\) }
        • \((m'+1)q'+0\)
      • \(=\) { Let \(m=m'+1,~q=q',~r=0\) }
        • \(mq+r\)
      • \(\square\)
      • \(\bullet\) case2: \(r'+1<q'\)
      • \(\Vdash\) \(m'q'+r'+1\)
      • \(=\) { Let \(r=r'+1\) }
        • \(m'q'+r\)
      • \(=\) { Let \(m=m',~q=q'\) }
        • \(mq+r\)
      • \(\square\)
    • \(\square\)
  • \(\square\)