Exercise 2.3.4

2.3.4. Prove the identity \((a+b)^2=a^2+2ab+b^2\) for all natural numbers \(a,b\).

  • \(\bullet\) Show that \((a+b)^2=a^2+2ab+b^2\) for all natural numbers \(a,b\).
  • \(\Vdash\) \((a+b)^2\)
  • \(=\) { Definition of exponentiation: \(m^0:=1\); \(m^{n\pp}:=m^n\times m\);
    \(\hspace{1cm} m^2=m^{1\pp}=m^1\times m=m^0\times m\times m=1\times m\times m=m\times m\) }
    • \((a+b)\times (a+b)\)
  • \(=\) { Distributive law: \((b+c)a=ba+ca\) }
    • \(a(a+b)+b(a+b)\)
  • \(=\) { Distributive law: \(a(b+c)=ab+ac\) }
    • \(aa+ab+ba+bb\)
  • \(=\) { Commutative law: \(nm=mn\) }
    • \(aa+ab+ab+bb\)
  • \(=\) { Definition of multiplication: \((n\pp)\times m:=n\times m+m\);
    \(\hspace{1cm} 2m=(1\pp)m=1m+m=m+m\) }
    • \(aa+2ab+bb\)
  • \(=\) { Definition of exponentiation: \(m^0:=1\); \(m^{n\pp}:=m^n\times m\);
    \(\hspace{1cm} a^2=a^{1\pp}=a^1a=a^0aa=1aa=aa\) }
    • \(a^2+2ab+b^2\)
  • \(\square\)