Exercise 2.3.2 (Lemma 2.3.3 )

(Positive natural numbers have no zero divisors). Let \(n\), \(m\) be natural numbers. Then \(n × m = 0\) if and only if at least one of \(n\), \(m\) is equal to zero. In particular, if \(n\) and \(m\) are both positive, then \(nm\) is also positive.

Proof of the second statement

  • \(\bullet\) \(\forall n \in \mathbb{N}\ \forall m \in \mathbb{N}\ n > 0 \land m > 0 \Rightarrow nm > 0\)

  • \(\Vdash\) { Proof by induction on \(n\) }

    • \(\bullet\) Base case: Show that \(\forall m \in \mathbb{N}\ 0 > 0 \land m > 0 \Rightarrow 0 \times m > 0\)

    • { \(0 > 0\equiv\) Flase. The implication is vacously true. }

    • \(\square\)

    • \(\bullet\) Inductive step: Show that \(\forall m \in \mathbb{N}\ n\pp > 0 \land m > 0 \Rightarrow (n\pp) \times m > 0\), when

    • \(\forall m \in \mathbb{N}\ n > 0 \land m > 0 \Rightarrow n \times m > 0\)

    • \(\Vdash\) \(\forall m \in \mathbb{N}\ n\pp > 0 \land m > 0 \Rightarrow (n\pp) \times m > 0\)

    • \(\equiv\) { \(n\pp > 0 \Leftrightarrow n >0 \lor n = 0\), Distribution of \(\land\) over \(\lor\) }

      • \(\forall m \in \mathbb{N}\ (n > 0 \land m > 0) \lor (n = 0 \land m >0 ) \Rightarrow (n\pp) \times m > 0\)
    • \(\equiv\) { \(a \lor b \Rightarrow c \equiv a \Rightarrow c \land b \Rightarrow c\) }

      • \(\forall m \in \mathbb{N}\ (n > 0 \land m > 0 \Rightarrow (n\pp) \times m > 0) \land (n = 0 \land m > 0 \Rightarrow (n\pp) \times m > 0)\)
    • \(\equiv\) { proof by cases }

      • \(\bullet\) \((n\pp) \times m > 0\), when

      • – n > 0

      • – m > 0

      • \(\Vdash\) \((n\pp) \times m\)

      • \(\equiv\) { Def. 2.3.1: \((n\pp)\times m := (n \times m) + m\) }

        • (n × m) + m
      • \(>\) { Proposition. 2.2.8: \(a > 0 \land b \in \mathbb{N} \Rightarrow a + b > 0\),

      •     Assumption \(m > 0\) }

        • 0
      • \(\square\)

      • \(\bullet\) \((n\pp) \times m > 0\), when

      • – n = 0

      • – m > 0

      • \(\Vdash\) \((n\pp) \times m\)

      • \(\equiv\) { Assumption \(n = 0\) }

        • \((0 \pp) \times m\)
      • \(\equiv\) { Def. 2.3.1: \((n\pp)\times m := (n \times m) + m\) }

        • (0 × m) + m
      • \(\equiv\) { Def. 2.3.1: \(0 \times m := 0\) }

        • 0 + m
      • \(\equiv\) { Def. 2.2.1: \(0 + m := m\) }

        • m
      • \(>\) { Assumption \(m > 0\) }

        • 0
      • \(\square\)

    • \(\square\)

  • \(\square\)