Exercise 2.2.6

Let \(n\) be a natural number, and let \(P(m)\) be a property pertaining to the natural numbers such that whenever \(P(m\pp)\) is true, then \(P(m)\) is true. Suppose that \(P(n)\) is also true. Prove that \(P(m)\) is true for all natural numbers \(m\leq n\); this is known as the \(principle~of~backwards~induction\). (Hint: apply induction to the variable \(n\).)

  • \(\bullet\) Show that \(P(n)\implies \forall m\leq n,~P(m)\), when

  • \(P(m\pp)\implies P(m)\)

  • \(\Vdash\) { Proof by induction on \(n\) }

    • \(\bullet\) Base case: show that \(P(n)\implies \forall m\leq n,~P(m)\), when

    • \(n=0\)

    • \(\Vdash\) \(P(0)\implies \forall m\leq 0,~ P(m)\)

    • \(\equiv\) { By the definition of ordering, \(m+a=0\), then by Corollary 2.2.9 \(m=0\) }

      • \(P(0)\implies P(0)\)
    • \(\square\)

    • \(\bullet\) Inductive step: show that \(P(n\pp)\implies \forall m\leq n\pp,~P(m)\), when

    • \(P(n)\implies \forall m\leq n,~P(m)\)

    • \(\Vdash\) \(P(n\pp)\implies \forall m\leq n\pp,~P(m)\)

    • \(\equiv\) { \(\forall m\leq n\pp,~ P(m)\equiv \left((\forall m\leq n,~ P(m))\land P(n\pp)\right)\) }

      • \(P(n\pp)\implies (\forall m\leq n,~ P(m))\land P(n\pp)\)
    • \(\equiv\) { \(P\implies (Q\land R)\equiv (P\implies Q)\land (P\implies R)\) (is it true????) }

      • \((P(n\pp)\implies (\forall m\leq n. P(m)))\land( P(n\pp)\implies P(n\pp))\)
    • \(\equiv\) { \(P\land T\equiv P\) }

      • \(P(n\pp)\implies \forall m\leq n,~ P(m)\)
    • \(\equiv\) { from the assumption \(P(m\pp)\implies P(m)\) and the inductive hypothesis
      \(\hspace{1cm} P(n\pp)\implies P(n)\implies \forall m\leq n,~P(m)\) }

      • True
    • \(\square\)

  • \(\square\)