Exercise 2.2.5 (Proposition 2.2.14)

2.2.5. Prove Proposition 2.2.14. (Hint: define \(Q(n)\) to be the property that \(P(m)\) is true for all \(m_0\leq m<n\); note that \(Q(n)\) is vacuously true when \(n\leq m_0\).)

  • + Define \(Q(n)\): \(\forall m~ (m_0\leq m <n),~P(m)\)
  • \(\bullet\) Show that \((\forall m, Q(m) \implies P(m)) \implies \forall m\geq m_0,~P(m)\)
    • \(\bullet\) Show that \(\forall m\geq m_0,~P(m)\)
    • \((\forall m, Q(m) \implies P(m))\)
    • \(\Vdash\) \(\forall n,~ Q(n)\)
    • \(\Rightarrow\) { by Proof2 }
      • \(\forall m\geq m_0,~P(m)\)
    • \(\equiv\) { by Proof1 and modus ponens }
      • True
    • \(\square\)
  • \(\square\)

Proof1. \(\left(\forall n, Q(n) \implies P(n)\right) \implies \forall n,~ Q(n)\)

  • \(\bullet\) Show that \(\forall n,~Q(n)\)
  • \(Q(n) \implies P(n)\)
  • \(\Vdash\) { proof by induction }
    • \(\bullet\) base case: show that \(Q(0)\) is true when
    • \(\Vdash\) \(\forall m~(m_0\leq m<0),~P(m)\) is true.
    • \(\equiv\) { Vacuously true since \(m<0\) is false }
      • True
    • \(\square\)
    • \(\bullet\) Inductive step: show that \(Q(n\pp)\) is true when
    • \(Q(n)\) is true \(\left( Q(n) := \forall m~(m_0\leq m<n),~P(m)\right)\)
    • \(Q(n) \implies P(n)\)
    • \(\Vdash\) \(\forall m~(m_0\leq m<n\pp),~P(m)\)
    • \(\equiv\) { Proposition 2.2.12 (e): \(a<b\) iff \(a\pp\leq b\), \(m<n\pp\implies m\pp\leq n\pp\)
    • \(~~~~~\) Proposition 2.2.12 (d): \(a\geq b\) iff \(a+c\geq b+c\): \(m\pp\leq n\pp\implies m\leq b\) }
      • \(\forall m~(m_0\leq m\leq n), ~P(m)\)
    • \(\equiv\) { by definition }
      • \(Q(n) \land P(n)\)
    • \(\equiv\) { Inductive hypothesis \(Q(n)\) is true and \(Q(n) \implies P(n)\) }
      • True
    • \(\square\)
  • \(\square\)

Proof2. \(\forall n,~Q(n)\implies \forall m\geq m_0,~P(m)\)

  • \(\bullet\) Show that there is a contradiction, when
  • (1) \(\left( \forall m\geq m_0,~P(m) \right)\) is false
  • (2) \(\forall n,~Q(n)\)
  • \(\Vdash\) \(m' > m_0 \land P(m')\)
  • \(\equiv\) { by assumption (1) }
    • False
  • \(\equiv\) { by assumption (2) and \(\forall n, Q(n) \Rightarrow P(n)\) }
    • True
  • \(\vdash\) { excluded middle }
  • \(\square\)
Links to this page