Exercise 2.2.4 (Propostion 2.2.13)

2.2.4. Justify the three statments marked (why?) in the proof of Proposition 2.2.13.

\(0\leq b\) for all \(b\).

  • \(\bullet\) Show that \(0\leq b\) for all \(b\)
  • \(\Vdash\) \(b\)
  • \(=\) { definition of addition: \(0+m:=m\) }
    • \(0+b\)
  • \(\Rightarrow\) { definition of ordering: \(m\leq n\) iff \(n=m+a\) for some natural number \(a\) }
    • \(b\geq 0\)
  • \(\square\)

If \(a>b\), then \(a\pp>b\).

  • \(\bullet\) Show that \(a>b\implies a\pp>b\)

  • \(\Vdash\) \(a>b\)

  • \(\equiv\) { definition of ordering: \(m<n\) iff \((m\leq n)\land(m\neq n)\) }

    • \((a\geq b)\land(a\neq b)\)
  • \(\equiv\) { properties of order (d): \(a\geq b\) iff \(a+c\geq b+c\) }

    • \((a+1\geq b+1)\land(a\neq b)\)
  • \(\equiv\) { \(n\pp=n+1\) }

    • \((a\pp\geq b\pp)\land(a\neq b)\)
  • \(\equiv\) { properties of order (e): \(a<b\) iff \(a\pp\leq b\) }

    • \((a\pp>b)\land(a\neq b)\)
  • \(\Rightarrow\) { \(P\land Q\implies P\) }

    • \(a\pp>b\)
  • \(\square\)

If \(a=b\), then \(a\pp>b\).

  • \(\bullet\) Show that \(a=b\implies a\pp>b\)
  • \(\Vdash\) \(a=b\)
  • \(\Rightarrow\) { Substitution axiom: \(a=b\implies f(a)=f(b)\) }
    • \(a\pp=b\pp\)
  • \(\equiv\) { \(n\pp=n+1\) }
    • \(a\pp=b+1\)
  • \(\equiv\) { properties of order (f): \(a<b\) iff \(b=a+d\) for some positive number \(d\) }
    • \(a\pp>b\)
  • \(\square\)
Links to this page
  • Proposition 2.2.13

    \(Proof~by~Tao\) This is only sketch of the proof; the gaps will be filled in Exercise-2.2.4.
    \(~~\) First, we show that we cannot have more than one of the statments \(a<b,~a=b,~ a>b\) holding at the same time. If \(a<b\) then \(a\neq b\) by definition, and if \(a>b\) then \(a\neq b\) by definition. If \(a>b\) and \(a<b\) then by Proposition 2.2.12 we have \(a=b\), a contradiction. Thus no more than one of the statements is true. \(~~\) Now we show that at least one of the statements is true. We keep \(b\) fixed and induct on \(a\). When \(a=0\) we have \(0\leq b\) for all \(b\) (why?), so we have either \(0=b\) or \(0<b\), which proves the base case. Now suppose we have proven the proposition for \(a\), and now we prove the proposition for \(a\pp\). Form the trichotomy for \(a\), there are three cases: \(a<b,~a=b\), and \(a>b\). If \(a>b\), then \(a\pp>b\) (why?). If \(a=b\), then \(a\pp>b\) (why?). Now suppose that \(a<b\). Then by Proposition 2.2.12, we have \(a\pp\leq b\). Thus either \(a\pp=b\) or \(a\pp<b\), and in either case we are done. This closes the induction. \(\square\)