Exercise 2.2.3 (Propostion 2.2.12)

Prove Propostion 2.2.12 (Hint: you will need many of the preceding propositions, colloraries, and lemmas.)

(a)

  • \(\bullet\) Show that \(a\geq a\).

  • \(\Vdash\) \(a=a\)

  • \(\equiv\) { Lemma 2.2.2: \(n+0=n\) }

    • \(a=a+0\)
  • \(\equiv\) { definition of ordering: \(n\geq m\) iff \(n=m+a\) for some natural number \(a\) }

    • \(a\geq a\).
  • \(\square\)

(b)

  • \(\bullet\) Show that \((a\geq b)\land(b\geq c)\implies a\geq c\)
  • \(\Vdash\) \((a\geq b)\land(b\geq c)\)
  • \(\equiv\) { definition of ordering: \(n\geq m\) iff \(n=m+a\) for some natural number \(a\) }
    • \((a=b+d)\land(b=c+e)\) for some natural numbers \(d,e\)
  • \(\equiv\) { Substitute \(b\) using \(b=c+e\) }
    • \(a=c+e+d\) for some natural numbers \(d,e\)
  • \(\equiv\) { sum of two natural numbers is a natural number: \(e+d=n\) for some natural number \(n\) }
    • \(a=c+n\) for some natural number \(n\)
  • \(\equiv\) { definition of ordering: \(n\geq m\) iff \(n=m+a\) for some natural number \(a\) }
    • \(a\geq c\)
  • \(\square\)

(c)

  • \(\bullet\) Show that \((a\geq b)\land(b\geq a)\implies a=b\)

  • \(\Vdash\) \((a\geq b)\land(b\geq a)\)

  • \(\equiv\) { definition of ordering: \(n\geq m\) iff \(n=m+a\) for some natural number \(a\) }

    • \((a=b+d)\land(b=a+e)\) for some natural numbers \(d,e\)
  • \(\equiv\) { find \(d,e\) }

    • \(\Vdash\) \((a=b+d)\land(b=a+e)\)

    • \(\equiv\) { Substitute \(b\) using \(b=a+e\) }

      • \(a=a+e+d\)
    • \(\equiv\) { Lemma 2.2.2: \(n+0=n\) }

      • \(a+0=a+e+d\)
    • \(\equiv\) { cancellation law: \(a+b=a+c\implies b=c\) }

      • \(0=e+d\)
    • \(\equiv\) { Corollary 2.2.9: \(a+b=0\implies (a=0)\land(b=0)\) }

      • \((d=0)\land(e=0)\)
  • \(\cdots\) \((a=b+0)\land(b=a+0)\)

  • \(\equiv\) { Lemma 2.2.2: \(n+0=n\) }

    • \((a=b)\land(b=a)\)
  • \(\square\)

(d)

  • \(\bullet\) Show that \(a\geq b\iff a+c\geq b+c\)
  • \(\Vdash\) \(a\geq b\iff a+c\geq b+c\)
    • \(\bullet\) Show that \(a\geq b\implies a+c\geq b+c\)
    • \(\Vdash\) \(a\geq b\)
    • \(\equiv\) { definition of ordering: \(n\geq m\) iff \(n=m+a\) for some natural number \(a\) }
      • \(a=b+d\)
    • \(\equiv\) { Substitution axiom: \(x=y\implies f(x)=f(y)\) }
      • \(a+c=b+d+c\)
    • \(\equiv\) { addition is commutative: \(n+m=m+n\) }
      • \(a+c=b+c+d\)
    • \(\equiv\) { definition of ordering: \(n\geq m\) iff \(n=m+a\) for some natural number \(a\) }
      • \(a+c\geq b+c\)
    • \(\square\)
    • \(\bullet\) Show that \(a+c\geq b+c\implies a\geq b\)
    • \(\Vdash\) \(a+c\geq b+c\)
    • \(\equiv\) { definition of ordering: \(n\geq m\) iff \(n=m+a\) for some natural number \(a\) }
      • \(a+c=b+c+d\)
    • \(\equiv\) { addition is commutative: \(n+m=m+n\) }
      • \(a+c=b+d+c\)
    • \(\equiv\) { cancellation law: \(a+b=a+c\implies b=c\) }
      • \(a=b+d\)
    • \(\equiv\) { definition of ordering:\(n\geq m\) iff \(n=m+a\) for some natural number \(a\) }
      • \(a\geq d\)
    • \(\square\)
  • \(\square\)

(e)

  • \(\bullet\) Show that \(a<b\iff a\pp\leq b\)

  • \(\Vdash\) \(a<b\iff a\pp\leq b\)

    • \(\bullet\) Show that \(a<b\implies a\pp\leq b\)

    • \(\Vdash\) \(a<b\)

    • \(\equiv\) { definition of ordering: \(m<n\) iff \((m\leq n)\land(m\neq n)\) }

      • \((a\leq b)\land(a\neq b)\)
    • \(\equiv\) { definition of ordering: \(n\geq m\) iff \(n=m+a\) for some natural number \(a\) }

      • \((b=a+d)\land(a\neq b)\)
    • \(\Rightarrow\) { show that when \(b=a+d\), \(a\neq b\implies d\neq0\) by a proof by contradiction }

      • \(\bullet\) Show that there is a contradiction, when

      • \(a\neq b\)

      • \(d=0\)

      • \(\Vdash\) \(b=a+d\)

      • \(\equiv\) { assumption: \(d=0\) }

        • \(b=a+0\)
      • \(\equiv\) { Lemma 2.2.2: \(n+0=n\) }

        • \(b=a\)
      • \(\vdash\) { assumption: \(a\neq b\) }

        • \(\bot\)
      • \(\square\)

    • \(\cdots\) \((b=a+d)\land(d\neq0)\)

    • \(\equiv\) { Definition 2.2.7: a natural number \(n\) is positive iff \(n\neq 0\) }

      • \((b=a+d)\land(d\textnormal{ is positive})\)
    • \(\equiv\) { Lemma 2.2.10: For a positive number \(n\), \(\exists! m,~ m\pp=n\) }

      • \(b=a+(m\pp)\)
    • \(\equiv\) { Lemma 2.2.3: \(n+(m\pp)=(n+m)\pp\) }

      • \(b=(a+m)\pp\)
    • \(\equiv\) { addition is commutative: \(n+m=m+n\) }

      • \(b=(m+a)\pp\)
    • \(\equiv\) { Lemma 2.2.3: \(n+(m\pp)=(n+m)\pp\) }

      • \(b=m+(a\pp)\)
    • \(\equiv\) { addition is commutative: \(n+m=m+n\) }

      • \(b=(a\pp)+m\)
    • \(\equiv\) { definition of ordering : \(m\leq n\) iff \(n=m+a\) }

      • \(a\pp\leq b\)
    • \(\square\)

    • \(\bullet\) Show that \(a\pp\leq b\implies a<b\)

    • \(\Vdash\) \(a\pp\leq b\)

    • \(\equiv\) { definition of ordering : \(m\leq n\) iff \(n=m+a\) }

      • \(b=(a\pp)+n\)
    • \(\equiv\) { definition of addition: \((n\pp)+m := (n+m)\pp\) }

      • \(b=(a+n)\pp\)
    • \(\equiv\) { Lemma 2.2.3: \(n+(m\pp)=(n+m)\pp\) }

      • \(b=a+(n\pp)\)
    • \(\Rightarrow\) { show that \(b=a+(n\pp)\implies b\neq a\) by a proof by contradiction }

      • \(\bullet\) Show that there is a contradiction, when

      • \(b=a+(n\pp)\)

      • \(b=a\)

      • \(\Vdash\) \(b=a+(n\pp)\)

      • \(\equiv\) { assumption: \(b=a\) }

        • \(a=a+(n\pp)\)
      • \(\equiv\) { Lemma 2.2.2: \(n+0=n\) }

        • \(a+0=a+(n\pp)\)
      • \(\equiv\) { cancellation law: \(a+b=a+c\implies b=c\) }

        • \(0=n\pp\)
      • \(\vdash\) { Axiom 2.3: \(n\pp\neq0\) for every natural number \(n\) }

        • \(\bot\)
      • \(\square\)

    • \(\cdots\) \((b=a+(n\pp))\land(b\neq a)\)

    • \(\equiv\) { definition of ordering: \(m<n\) iff \((m\leq n)\land(m\neq n)\) }

      • \(a<b\)
    • \(\square\)

  • \(\square\)

(f)

  • \(\bullet\) Show that \(a<b\) iff \(b=a+d\) for some positive number \(d\)
  • \(\Vdash\) \(a<b\iff(b=a+d)\land(d\textnormal{ is positive})\)
    • \(\bullet\) Show that \(a<b\implies (b=a+d)\land(d\textnormal{ is positive})\)
    • \(\Vdash\) \(a<b\)
    • \(\equiv\) { definition of ordering: \(m\leq n\) iff \(n=m+a\),
    • \(\hspace{5.3cm}\) \(m<n\) iff \((m\leq n)\land(n\neq m)\) }
      • \((b=a+d)\land(a\neq b)\)
    • \(\Rightarrow\) { show that when \(b=a+d\), \(a\neq b\implies d\neq0\) by a proof by contradiction }
      • \(\bullet\) Show that there is a contradiction, when
      • \(a\neq b\)
      • \(d=0\)
      • \(\Vdash\) \(b=a+d\)
      • \(\equiv\) { assumption: \(d=0\) }
        • \(b=a+0\)
      • \(\equiv\) { Lemma 2.2.2: \(n+0=n\) }
        • \(b=a\)
      • \(\vdash\) { assumption: \(a\neq b\) }
        • \(\bot\)
      • \(\square\)
    • \(\cdots\) \((b=a+d)\land(d\neq0)\)
    • \(\equiv\) { Definition 2.2.7: a natural number \(n\) is positive iff \(n\neq 0\) }
      • \((b=a+d)\land(d\textnormal{ is positive})\)
    • \(\square\)
    • \(\bullet\) Show that \((b=a+d)\land(d\textnormal{ is positive})\implies a<b\)
    • \(\Vdash\) \((b=a+d)\land(d\textnormal{ is positive})\)
    • \(\equiv\) { Definition 2.2.7: a natural number \(n\) is positive iff \(n\neq 0\) }
      • \((b=a+d)\land(d\neq0)\)
    • \(\Rightarrow\) { show that when \(b=a+d\), \(d\neq0\implies b\neq a\) by a proof by contradiction }
      • \(\bullet\) Show that there is a contradiction, when
      • \(d\neq0\)
      • \(b=a\)
      • \(\Vdash\) \(b=a+d\)
      • \(\equiv\) { assumption: \(b=a\) }
        • \(a=a+d\)
      • \(\equiv\) { Lemma 2.2.2: \(n+0=n\) }
        • \(a+0=a+d\)
      • \(\equiv\) { cancellation law: \(a+b=a+c\implies b=c\) }
        • \(0=d\)
      • \(\vdash\) { \(d\neq0\) }
        • \(\bot\)
      • \(\square\)
    • \(\cdots\) \((b=a+d)\land(b\neq a)\)
    • \(\equiv\) { definition of ordering: \(m\leq n\) iff \(n=m+a\),
    • \(\hspace{5.3cm}\) \(m<n\) iff \((m\leq n)\land(n\neq m)\) }
      • \(a<b\)
    • \(\square\)
  • \(\square\)