Exercise 2.2.2 (Lemma 2.2.10)

Prove Lemma 2.2.10. (Hint: use induction. the induction here is somewhat degenerate, in that the induction hypothesis is not actually used, but this does not prevent the argument from remaining valid; cf. the discussion on implication and causality in Appendix A.2.)

  • \(\bullet\) Show that \(\forall a\in\mathbb{N}.~a\neq0\implies \exists!b\in\mathbb{N}.~b\pp=a\).

  • \(\Vdash\) { Proof by induction on \(a\) }

    • \(\bullet\) Base case: show that \(\forall a\in\mathbb{N}.~a\neq0\implies \exists!b\in\mathbb{N}.~b\pp=a\), when

    • \(a=0\)

    • \(\Vdash\) \(0\neq0\implies \exists!b\in\mathbb{N}.~b\pp=0\)

    • \(\equiv\) { implication is vacuously true since the premise \(0\neq0\) is false }

      • True
    • \(\square\)

    • \(\bullet\) Inductive step: show that \(\forall a\pp\in\mathbb{N}.~a\pp\neq0\implies \exists!b\in\mathbb{N}.~b\pp=a\pp\), when

    • \(\forall a\in\mathbb{N}.~a\neq0\implies \exists!b\in\mathbb{N}.~b\pp=a\)

    • \(\Vdash\) \(\forall a\pp\in\mathbb{N}.~a\pp\neq0\implies \exists!b\in\mathbb{N}.~b\pp=a\pp\)

    • \(\equiv\) { Show existence and uniquness of \(b\) }

      • \(\bullet\) Existence of \(b\)

      • \(\Vdash\) \(\forall a\pp\in\mathbb{N}.~a\pp\neq0\implies \exists b\in\mathbb{N}.~b\pp=a\pp\)

      • \(\equiv\) { Let \(b:=a\) }

        • \(\forall a\pp\in\mathbb{N}.~a\pp\neq0\implies a\pp=a\pp\)
      • \(\equiv\) { Reflexive axiom }

        • True
      • \(\square\)

      • \(\bullet\) Uniqueness of \(b\)

      • \(\forall a\pp\in\mathbb{N}.~a\pp\neq0\)

      • \(\Vdash\) \((b\pp=a\pp)\land (c\pp=a\pp)\)

      • \(\Rightarrow\) {\(b=a\), \(c=a\) by Axiom 2.4 }

        • \((b=a)\land (c=a)\)
      • \(\equiv\) { Symmetry axiom : \((c = a) \equiv (a = c)\) }

        • \((b=a)\land (a=c)\)
      • \(\Rightarrow\) { Transitive axiom }

        • \(b=c\)
      • \(\square\)

    • \(\cdots\) True

    • \(\square\)

  • \(\square\)

In the inductive step, the inductive assumption \(P(n)\) was not used. Since \(P(n\pp)\) is true, \(P(n)\implies P(n\pp)\) is always true whether \(P(n)\) is true or not