Exercise 2.2.1 (Proposition 2.2.5)

Prove Proposition 2.2.5 (Hint: fix two of the variables and induct on the third)

  • \(\bullet\) Show that \((a+b)+c=a+(b+c)\) for each \(a,b,c\in\mathbb{N}\).

  • \(\Vdash\) { Proof by induction on \(a\) }

    • \(\bullet\) Base case: show that \((a+b)+c=a+(b+c)\), when

    • \(a=0\)

    • \(\Vdash\) \((0+b)+c=0+(b+c)\)

    • \(\equiv\) { definition of addition: \(0 + m := m\) }

      • \(b+c=b+c\)
    • \(\square\)

    • \(\bullet\) Inductive step: show that \(((a\pp)+b)+c=(a\pp)+(b+c)\), when

    • \((a+b)+c=a+(b+c)\)

    • \(\Vdash\) \(((a\pp)+b)+c\)

    • \(=\) { definition of addition: \((n\pp)+m := (n+m)\pp\) }

      • \(((a+b)\pp)+c\)
    • \(=\) { definition of addition: \((n\pp)+m := (n+m)\pp\) }

      • \(((a+b)+c)\pp\)
    • \(=\) { inductive hypothesis,

    • \(~~~~~\) Substitution Axiom: \(a = b \implies f(a) = f(b)\) }

      • \((a+(b+c))\pp\)
    • \(=\) { definition of addition: \((n\pp)+m := (n+m)\pp\) }

      • \((a\pp)+(b+c)\)
    • \(\square\)

  • \(\square\)